2016-11-25 17:21:56 | 人围观 | 评论:
PCF8591的通信接口是I2C,那么编程肯定是符合这个协议的。单片机对PCF8591进行初始化,一共发送三个字节即可。第一个字节,和EEPROM类似,第一个字节是地址字节,其中7位代表地址,1位代表读写方向。地址高4位固定是1001,低三位是A2,A1,A0,这三位我们电路上都接了GND,因此也就是000,如图1所示。
图1 PCF8591地址字节
发送到PCF8591的第二个字节将被存储在控制寄存器,用于控制PCF8591的功能。其中第3位和第7位是固定的0,另外6位各自有各自的作用,如图2所示,我逐一介绍。
图2 PCF8591控制字节
控制字节的第6位是DA使能位,这一位置1表示DA输出引脚使能,会产生模拟电压输出功能。第4位和第5位可以实现把PCF8591的4路模拟输入配置成单端模式和差分模式,单端模式和差分模式的区别,我们17.4章节有介绍,这里大家只需要知道这两位是配置AD输入方式的控制位即可,如图3所示。
图3 PCF8591模拟输入配置方式
控制字节的第2位是自动增量控制位,自动增量的意思就是,比如我们一共有4个通道,当我们全部使用的时候,读完了通道0,下一次再读,会自动进入通道1进行读取,不需要我们指定下一个通道,由于A/D每次读到的数据,都是上一次的转换结果,所以同学们在使用自动增量功能的时候,要特别注意,当前读到的是上一个通道的值。为了保持程序的通用性,我们的代码没有使用这个功能,直接做了一个通用的程序。
控制字节的第0位和第1位就是通道选择位了,00、01、10、11代表了从0到3的一共4个通道选择。
发送给PCF8591的第三个字节D/A数据寄存器,表示D/A模拟输出的电压值。D/A模拟我们一会介绍,大家知道这个字节的作用即可。我们如果仅仅使用A/D功能的话,就可以不发送第三个字节。
下面我们用一个程序,把AIN0、AIN1、AIN3测到的电压值显示在液晶上,同时大家可以转动电位器,会发现AIN0的值发生变化。
/***********************lcd1602.c文件程序源代码*************************/
#include <reg52.h>
#define LCD1602_DB P0
sbit LCD1602_RS = P1^0;
sbit LCD1602_RW = P1^1;
sbit LCD1602_E = P1^5;
void LcdWaitReady() //等待液晶准备好
{
unsigned char sta;
LCD1602_DB = 0xFF;
LCD1602_RS = 0;
LCD1602_RW = 1;
do
{
LCD1602_E = 1;
sta = LCD1602_DB; //读取状态字
LCD1602_E = 0;
} while (sta & 0x80); //bit7等于1表示液晶正忙,重复检测直到其等于0为止
}
void LcdWriteCmd(unsigned char cmd) //写入命令函数
{
LcdWaitReady();
LCD1602_RS = 0;
LCD1602_RW = 0;
LCD1602_DB = cmd;
LCD1602_E = 1;
LCD1602_E = 0;
}
void LcdWriteDat(unsigned char dat) //写入数据函数
{
LcdWaitReady();
LCD1602_RS = 1;
LCD1602_RW = 0;
LCD1602_DB = dat;
LCD1602_E = 1;
LCD1602_E = 0;
}
void LcdShowStr(unsigned char x, unsigned char y, const unsigned char *str) //显示字符串,屏幕起始坐标(x,y),字符串指针str
{
unsigned char addr;
//由输入的显示坐标计算显示RAM的地址
if (y == 0)
addr = 0x00 + x; //第一行字符地址从0x00起始
else
addr = 0x40 + x; //第二行字符地址从0x40起始
//由起始显示RAM地址连续写入字符串
LcdWriteCmd(addr | 0x80); //写入起始地址
while (*str != '/0') //连续写入字符串数据,直到检测到结束符
{
LcdWriteDat(*str);
str++;
}
}
void LcdInit() //液晶初始化函数
{
LcdWriteCmd(0x38); //16*2显示,5*7点阵,8位数据接口
LcdWriteCmd(0x0C); //显示器开,光标关闭
LcdWriteCmd(0x06); //文字不动,地址自动+1
LcdWriteCmd(0x01); //清屏
}
/***********************I2C.c文件程序源代码*************************/
#include <reg52.h>
#include <intrins.h>
#define I2CDelay() {_nop_();_nop_();_nop_();_nop_();}
sbit I2C_SCL = P3^7;
sbit I2C_SDA = P3^6;
void I2CStart() //产生总线起始信号
{
I2C_SDA = 1; //首先确保SDA、SCL都是高电平
I2C_SCL = 1;
I2CDelay();
I2C_SDA = 0; //先拉低SDA
I2CDelay();
I2C_SCL = 0; //再拉低SCL
}
void I2CStop() //产生总线停止信号
{
I2C_SCL = 0; //首先确保SDA、SCL都是低电平
I2C_SDA = 0;
I2CDelay();
I2C_SCL = 1; //先拉高SCL
I2CDelay();
I2C_SDA = 1; //再拉高SDA
I2CDelay();
}
bit I2CWrite(unsigned char dat) //I2C总线写操作,待写入字节dat,返回值为应答状态
{
bit ack; //用于暂存应答位的值
unsigned char mask; //用于探测字节内某一位值的掩码变量
for (mask=0x80; mask!=0; mask>>=1) //从高位到低位依次进行
{
if ((mask&dat) == 0) //该位的值输出到SDA上
I2C_SDA = 0;
else
I2C_SDA = 1;
I2CDelay();
I2C_SCL = 1; //拉高SCL
I2CDelay();
I2C_SCL = 0; //再拉低SCL,完成一个位周期
}
I2C_SDA = 1; //8位数据发送完后,主机释放SDA,以检测从机应答
I2CDelay();
I2C_SCL = 1; //拉高SCL
ack = I2C_SDA; //读取此时的SDA值,即为从机的应答值
I2CDelay();
I2C_SCL = 0; //再拉低SCL完成应答位,并保持住总线
return (~ack); //应答值取反以符合通常的逻辑:0=不存在或忙或写入失败,1=存在且空闲或写入成功
}
unsigned char I2CReadNAK() //I2C总线读操作,并发送非应答信号,返回值为读到的字节
{
unsigned char mask;
unsigned char dat;
I2C_SDA = 1; //首先确保主机释放SDA
for (mask=0x80; mask!=0; mask>>=1) //从高位到低位依次进行
{
I2CDelay();
I2C_SCL = 1; //拉高SCL
if(I2C_SDA == 0) //读取SDA的值
dat &= ~mask; //为0时,dat中对应位清零
else
dat |= mask; //为1时,dat中对应位置1
I2CDelay();
I2C_SCL = 0; //再拉低SCL,以使从机发送出下一位
}
I2C_SDA = 1; //8位数据发送完后,拉高SDA,发送非应答信号
I2CDelay();
I2C_SCL = 1; //拉高SCL
I2CDelay();
I2C_SCL = 0; //再拉低SCL完成非应答位,并保持住总线
return dat;
}
unsigned char I2CReadACK() //I2C总线读操作,并发送应答信号,返回值为读到的字节
{
unsigned char mask;
unsigned char dat;
I2C_SDA = 1; //首先确保主机释放SDA
for (mask=0x80; mask!=0; mask>>=1) //从高位到低位依次进行
{
I2CDelay();
I2C_SCL = 1; //拉高SCL
if(I2C_SDA == 0) //读取SDA的值
dat &= ~mask; //为0时,dat中对应位清零
else
dat |= mask; //为1时,dat中对应位置1
I2CDelay();
I2C_SCL = 0; //再拉低SCL,以使从机发送出下一位
}
I2C_SDA = 0; //8位数据发送完后,拉低SDA,发送应答信号
I2CDelay();
I2C_SCL = 1; //拉高SCL
I2CDelay();
I2C_SCL = 0; //再拉低SCL完成应答位,并保持住总线
return dat;
}
/***********************main.c文件程序源代码*************************/
#include <reg52.h>
bit flag300ms = 1; //300ms定时标志
unsigned char T0RH = 0; //T0重载值的高字节
unsigned char T0RL = 0; //T0重载值的低字节
unsigned char GetADCValue(unsigned char chn);
void ValueToString(unsigned char *str, unsigned char val);
void ConfigTimer0(unsigned int ms);
extern void LcdInit();
extern void LcdShowStr(unsigned char x, unsigned char y, const unsigned char *str);
extern void I2CStart();
extern void I2CStop();
extern unsigned char I2CReadACK();
extern unsigned char I2CReadNAK();
extern bit I2CWrite(unsigned char dat);
void main ()
{
unsigned char val;
unsigned char str[10];
EA = 1; //开总中断
ConfigTimer0(10); //配置T0定时10ms
LcdInit(); //初始化液晶
LcdShowStr(0, 0, "AIN0 AIN1 AIN3"); //显示通道指示
while(1)
{
if (flag300ms)
{
flag300ms = 0;
//显示通道0的电压
val = GetADCValue(0); //获取ADC通道0的转换值
ValueToString(str, val); //转为字符串格式的电压值
LcdShowStr(0, 1, str); //显示到液晶上
//显示通道1的电压
val = GetADCValue(1);
ValueToString(str, val);
LcdShowStr(6, 1, str);
//显示通道3的电压
val = GetADCValue(3);
ValueToString(str, val);
LcdShowStr(12, 1, str);
}
}
}
unsigned char GetADCValue(unsigned char chn) //读取当前的ADC转换值,chn为ADC通道号0-3
{
unsigned char val;
I2CStart();
if (!I2CWrite(0x48<<1)) //寻址PCF8591,如未应答,则停止操作并返回0
{
I2CStop();
return 0;
}
I2CWrite(0x40|chn); //写入控制字节,选择转换通道
I2CStart();
I2CWrite((0x48<<1)|0x01); //寻址PCF8591,指定后续为读操作
I2CReadACK(); //先空读一个字节,提供采样转换时间
val = I2CReadNAK(); //读取刚刚转换完的值
I2CStop();
return val;
}
void ValueToString(unsigned char *str, unsigned char val) //ADC转换值转为实际电压值的字符串形式
{
val = (val*25) / 255; //电压值=转换结果*2.5V/255,式中的25隐含了一位十进制小数
str[0] = (val/10) + '0'; //整数位字符
str[1] = '.'; //小数点
str[2] = (val%10) + '0'; //小数位字符
str[3] = 'V'; //电压单位
str[4] = '/0'; //结束符
}
void ConfigTimer0(unsigned int ms) //T0配置函数
{
unsigned long tmp;
tmp = 11059200 / 12; //定时器计数频率
tmp = (tmp * ms) / 1000; //计算所需的计数值
tmp = 65536 - tmp; //计算定时器重载值
tmp = tmp + 12; //修正中断响应延时造成的误差
T0RH = (unsigned char)(tmp >> 8); //定时器重载值拆分为高低字节
T0RL = (unsigned char)tmp;
TMOD &= 0xF0; //清零T0的控制位
TMOD |= 0x01; //配置T0为模式1
TH0 = T0RH; //加载T0重载值
TL0 = T0RL;
ET0 = 1; //使能T0中断
TR0 = 1; //启动T0
}
void InterruptTimer0() interrupt 1 //T0中断服务函数
{
static unsigned char tmr300ms = 0;
TH0 = T0RH; //定时器重新加载重载值
TL0 = T0RL;
tmr300ms++;
if (tmr300ms >= 30) //定时300ms
{
tmr300ms = 0;
flag300ms = 1;
}
}
细心阅读程序的同学会发现,我们程序在进行A/D读取数据的时候,共使用了两条程序去读了2个字节。I2CReadACK(); val = I2CReadNAK();PCF8591的转换时钟是I2C的SCL,而A/D的特点是每次读到的都是上一次的转换结果,因此我们这里第一条语句的作用是产生一个整体的SCL时钟提供给PCF8591进行A/D转换,第二次是读取当前的转换结果。如果我们只使用第二条语句的话,每次读到的都是上一次的转换结果。
全站搜索