变电所防雷保护措施电力及供电系统中,各种电气设备都有一定的绝缘强度。如果超过了设备所能承受的程度, 绝缘就会击穿。引起电气设备绝缘击穿的电压叫过电压。引起过电压的原因有两种:①是 操作过电压,也叫内部过电压;②是大气过电压,也叫外部过电压。操作过电压产生的原 因有很多种,如弧光接地,切断电感或电容都会产生过电压。大气过电压的产生是由雷电现 象引起。因此要抑制大气过电压,防雷措施就显得十分重要。
1 雷电的危害
雷电的形成伴随着巨大的电流和极高的电压,在它放电的过程中产生极大的破坏力,雷电的 危害主要是以下几个方面:
1.1 雷电的热效应
雷电产生强大的热能使金属熔化,烧断输电导线,摧毁用电设备,甚至引起火灾和爆炸。
1.2 雷电的机械效应
雷电强大的电动力可以击毁杆塔,破坏建筑物,人畜已不能幸免。
1.3 雷电的闪络放电
雷电产生的高电压会引起绝缘子烧坏,断路器跳闸,导致供电线路停电。
2 雷电过电压简介
雷电过电压又称为大气过电压它是由于内的设备或构筑遭受直接雷击或雷电感应而产生的过 电压。由于引起这种过电压的能量来源于外界,固有成为外部过电压。雷电过电压产生的雷 电冲击波,其电压幅值。可高达10 8V,其电流幅值可高达几十万安,因此对电力系统危 害极大,必须采取有效措施加以防护。
雷电过电压的基本形式有3种:
2.1 雷击过电压(直击雷)
雷电直接击 中电气设备,线路或建筑物,强大的雷电流作用,通过该 物体泄入大地,在该物体上产生较高的电位差,成为直击雷过电压。雷电流通过被击物体时 ,将产生破坏作用的热效应和机械效应,相伴的还有电磁效应和对附近物体的闪络放电。
2.2 感应过电压(感应雷)
当雷云在架空线路上方时,由于雷云先导作 用,使架空线路上感应 出与先导通道符号相反的电荷。雷云放电时,先导通道中的电荷迅速中和,架空线路上的电 荷被释放,形成自由电荷流向线路两端,产生很高的过电压(高压线路可达几十万伏,低压 线路可达几万伏)。
2.3 雷电波入侵
由于直击雷或感应雷而产生的高 电位雷电波,沿架空线路或金属管道侵入变配 电所或用户而造成危害。据统计,供电系统中由于雷电波侵入而造成的雷电事故,在整个事 故中占50%以上。因此,对其防护问题应予以足够的重视。
3 防止感应雷的措施
防止雷电过电压的主要措施是并联避雷器。
3.1 避雷器的简介
电力系统中的电气设备在运行中除承受正常的工作电压以外,有时还遭受操作过电压和雷电 过电压。过电压的数值远超过工作电压,使设备的绝缘寿命缩短,甚至直接遭到破坏。
避雷器是专门用来防止雷电过电压的保护电器,与被保护的电器设备并列连接。它们大量应 用在牵引变电所、接触网和电力机车中。
牵引变电所中电气设备的绝缘水平系由大气过电压决定,因为对于最高电压等级目前为110k V的牵引供电系统,其可能遭受的最大操作过电压常小于雷电过电压的作用值。为防雷害, 在变电所的进线、出线侧都并联装设避雷器以“削减”、“限制”侵入所内的雷电波至较低 于各避雷器的残压水平,并将雷电流泄入大地,从而保护了其保护范围内的设备。而这些设 备也仅需具有能耐较残压值略高的绝缘水平即可不至于损坏。
避雷器的作用就是通过并联放电间隙或非线性电阻,对入侵的流动电波进行削幅。降低被保 护设备所承受的过电压值。避雷器既可用来防护大气过电压也可用来防护操作过电压。
3.2 避雷器的分类
①放电间隙及管型避雷器。②阀型避雷器,包括:间隙不带并联电阻的,如FS型;间隙带 并联电阻的,如FZ,间隙带磁吹的,如FCZ、FCD型。③无间隙氧化锌避雷器。
3.3 结构分析
阀型避雷器由火花间隙和阀型电阻盘两部分组成。阀型避雷器的阀型电阻盘是一个非线性电 阻,在工频电压下其电阻值非常大,在冲击高压下其阻值非常低。在正常情况下,火花间隙 具有很高的绝缘强度,工频交流电压不能将其击穿,阀型电阻盘上无电流通过;当雷电袭来 时,火花间隙被迅速击穿,在冲击电压作用下,阀盘电阻具有很低的电阻值,雷电流通过阀 型电阻盘流入大地;当雷电流通过后,由于工频电流很小,阀型电阻又恢复了高阻抗的性质 。伏秒特性和伏安特性是阀型避雷器的两个基本特性,磁吹阀型避雷器是采用磁场驱动电流 来提高灭弧性能。
氧化锌避雷器的基本结构是阀片,阀片以氧化锌为主要成份,并添加少量的Bi2O3、Co2O3、MnO2、Sb2O3等金属氧化物添加剂。这种阀片具有优良的非线性和较大的通 流容量。氧化锌阀片在运行电压下呈绝缘状态,通过的电流很小,随着阀片承受电压升高, 电流也随之增强。
角隙避雷器是利用角形空气间隙放电将泪流泄入大地而起到保护作用的。放电时两个间隙中 的电弧因电动力的作用被拉长,在交流过零时被周围空气介质冷却熄灭。
管型避雷器当线路上遭到雷击或产生感应时,大气过电压使管型避雷器的外部和内部间隙击 穿,强大的雷击电流通过接地装置进入地下。同时,由于避雷器内部间隙发生强烈的电弧, 使管内壁的材料燃烧。产生大量的灭弧气体从管口喷出,在电流过零时电弧熄灭。
3.4 型号