2016-10-22 10:34:40 | 人围观 | 评论:
光纤损耗对最大中继距离的限制,可通过光纤放大器得以解决(关于光纤放大器的问题将在本书第七章中介绍);而光纤色散问题,则根据现代光纤通信技术的要求,采用一些特殊光纤得以改善,本节将从物理概念上介绍几种新型光纤的结构及工作原理。
一、色散位移单模光纤
前面在介绍光纤的传输特性时提到,常规的石英单模光纤在1.55μm处损耗最小,在1.31μm时色散系数趋于零,称为单模光纤材料零色散波长。为了获得最小损耗和最小色散,必须要研制一种新型光纤。色散位移光纤(DSF)就是将零色散点移到1.55μm处的光纤。 对于单模光纤,只存在材料色散和波导色散。由图2-19可知,在1.55μm处,如果能够使单模光纤的材料色散和波导色散互相补偿,即可使在这个波长上单模光纤的总色散为零。
目前采用的主要方法是通过改变光纤的结构参数,加大波导色散值,实现1.55μm处的低损耗与零色散,如图2-25所示。
在光纤通信系统中,为了实现大容量、超长距离的传输,线路中选用色散位移光纤和光放大器,使这一问题得以解决。
在研究过程中发现,色散位移光纤在1.55μm单一波长处,进行长距离传输具有很大的优越性,但是当在一根光纤上同时传输多波长光信号并采用光放大器时,DSF就会在零色散波长区出现严重的非线性效应,这样就限制了波分复用技术的应用。为了解决这一问题,引出了另一种新型的光纤,即非零色散光纤(NZDF)。
全站搜索