能够根据输入的指令和数据,使生产机械按预定的工作顺序、运动轨迹、运动距离和运动速度等规律完成工作的自动控制,称为数字程序控制。 数字程序控制主要应用于机床的自动控制,采用数字程序控制的机床称为数控机床。数控机床能够加工形状复杂的零件、加工精度高、生产效率高,而且易于改换加工品种,因此是机床自动化的一个重要发展方向。 目前,数字程序控制系统都是以计算机为核心组成的,它包括输入装置、输出装置、插补器和控制器等部分。输入装置把预先编制好的程序指令与数据录入系统,这些程序指令与数据规定了生产机械的工作顺序、运动轨迹、运动距离和运动速度等。插补器就是计算机内的一段程序,用于完成插补运算,即根据输入的基本数据(如直线的起点、终点坐标,圆弧的圆心、起点、终点坐标等),计算加工的曲线或曲面上的其他点的坐标。输出装置根据插补运算结果向执行机构发出控制指令,从而使生产机械能够沿预定的轨迹运动。控制器协调系统的各个部分,使其有条不紊地工作。采用数字程序控制的机床原理见图1。 图1 数控机床原理框图 1. 数字插补算法 实现插补运算的方法很多,有逐点比较插补方法、数字积分插补方法、时间分割插补方法和样条插补方法等,其中逐点比较插补方法(简称逐点比较法)应用最广,在此予以专门讨论。 所谓逐点比较插补,就是在每次进给(即“走步”)前,首先通过计算判断加工点(即“动点”)是否在预定的轨迹上及相对于预定轨迹的位置,然后据此决定进给方向。由于这种方法每走一步就需比较、判断一次,即走一步看一步,所以称为逐点比较法。 逐点比较法是以矩形折线来逼近规定的轨迹的,插补出的轨迹与预定轨迹之间的最大误差为一个脉冲当量(即一个步进脉冲对应的运动位移,也即所谓“走一步”的位移),因此只要使脉冲当量足够小,即可满足加工精度要求。 虽然数控机床加工的零件可能各种各样,但大部分的零件图形都可由直线和圆弧两种插补得到,据统计,由直线和圆弧组成轮廓的零件占机械加工零件的70%以上,因此本节以直线和圆弧的插补为例说明逐点比较法原理。 ⑴ 直线逐点比较法插补 ① 直线插补计算原理 不失一般性,假定要加工第一象限内从坐标原点开始的一条直线OE,终点E的坐标为(xe,ye)。若当前加工点m(xm,ym)在直线OE上,则有
|