网络互连设备是网络互连的关键,它既可以是专门的设备,也可以利用各子网原有的结点。网络互连设备在内部执行各子网的协议,成为子网的一部分;实现不同子网协议之间的转换,保证执行两种不同协议的网络之间可以进行互连通信。协议转换包括协议数据格式的转换、地址映射、速率匹配、网间流量控制等。参照ISO OSI/RM,协议转换的过程可以发生在任何层次,如果某设备在进行信息的转发时与其他系统共享第n层协议,不共享第n+1层协议,那么这个设备就称为工作在n层互联设备。例如:转发器与集线器工作在物理层,网桥与交换机工作在数据链路层,路由器工作在网络层,网关工作在应用层。 1、转发器与集线器 转发器又被称为中继器或放大器,执行物理层协议,实现电气信号的“接收-放大-整形-发送” .作为一种物理层设备网络互连部件,转发器用于互连两个完全相同的两类网络(例如:两个以太网段),其主要功能是通过对数据信号的重新发送或者转发,来扩大网络传输的距离。当被延伸的传输媒体为数字信道时,转发器(中继器)根据阈值电平识别输入信号,并将失真了的数字信号还原到原来的形状(整形);当被延伸的传输媒体是模拟信道时,转发器(放大器)将衰减的信号放大到适合的数值(放大)。转发器最多只能使用四个 。 集线器(HUB)就是一种具有多个转发端口的特殊转发器,例如8端口、16端口等。 集线器也工作于OSI第一层,即“物理层”,各端口实现电气信号的“广播再生”,各端口的所有计算机共享整个集线器的带宽,采用CSMA/CD访问方式。集线器的同一时刻每一个端口只能进行一个方向的数据通信,而不能像交换机那样进行双向双工传输,网络执行效率低,不能满足较大型网络通信需求。 2、网络适配器 网络适配器也称网络接口卡(Network Interface Card,NIC),简称网卡,工作在数据链路层,与传输介质共同实现 OSI 参考模型中的物理层的全部功能和链路层的大部分功能,即接口的定义、信号的收发、编码、介质访问控制、串并转换等 。 3、网桥与交换机 网桥又称桥接器或信桥,提供了一种对LAN的扩展,最早是为把那些具有相同物理层和介质访问子层的局域网互连起来而设计的,后来也用于具有不同介质访问MAC协议的局域网的互连,但LLC协议是一致的。
也就是说,网桥工作在数据链路层,进行相似的网络间的帧的转发,实现MAC子层的连接,例如:以太网―以太网、以太网―令牌环、以太网--FDDI。 网桥的结构由端口模块,存储模块、软件模块(端口管理软件、协议转换软件、地址表)、转发模块四部分组成。 网桥的工作过程,就是由这四部分相互协调,实现“查找和转发”的过程。网桥从端口模块接收MAC帧,并把帧存放在缓存,即存储模块,软件模块检查该帧的源地址和目的地址,如果目的地址和源地址在同一网络中,则不对其进行转发,这起到了相应的“过滤”作用,从而实现了对网络的隔离。否则,根据它所保持的MAC地址表选择正确的转发端口,由转发模块进行“转发”,若在MAC地址表中未找到表项,则采用扩散算法转发到所有非输入端口。 根据网桥所采用的路由算法的不同,可以将局域网中使用的网桥分为生成树网桥和源路由选择网桥两种。 (1)生成树网桥 生成树网桥也叫透明桥(Transparent Bridge)。所谓“透明”,所有的路由判断全部由网桥自己确定。当网桥连接在网络中时,它能自动初始化并对自身进行配置,不需要人工做任何配置。网桥自动初始化的过程,采用一种称为基于向后学习(Backward Learning)的算法来建立和维护其路由表。为了处理动态拓扑问题,每当增加地址端口项时,在这项中注明帧的到达时间。每当表中已有的地址发来的帧到达里,用当前时间更新该项。网桥中的端口管理软件有一进程定期扫描地址端口表,清除存在时间大于某个设定值的全部项,这种处理意味着如果某台机器断开或停机一定时间,网桥中就不再保留该机器有关的地址端口项。 (2)源路由桥 源路由桥是由发送帧的源工作站负责路由选择。 为了选择最佳路由,源站以广播方式向目的站发送路由选择帧,沿所有可能的路径传送。当路由选择帧到达目的站后,就沿原路径返回源站,带回路由信息,源站从所有可能的路径中选择一条最佳路由,记入本站的路由选择表中。此后凡从这个源站向这个目的站发送的帧,其首部都携带源站所确定的路由信息。 交换机,也称为交换式集线器,是一种具有多个转发端口的网桥,工作在数据链路层。交换机和网桥的不同在于,交换机端口数较多,交换机的数据传输效率较高。网桥的数据转发功能是通过软件实现的,交换机的数据帧转发功能是通过硬件实现的,传输时延少,由网桥的几百μs减少到几十μs,传输带宽高。交换机的特点有:支持少量的存储能力、少量的地址表(提高查表速度)、处理相同的帧格式(相同类型的网络互连)、具有分割子网的功能、每个端口独享指定的带宽、支持多个独立的数据流,具有较多的吞吐量硬件交换,交换速度快。 4、路由器 路由器是工作在网络层上的网络互连设备,执行OSI网络层及其下层的协议转换 。 路由器的基本功能主要如下: 第一,网络互连:路由器支持各种局域网和广域网接口,支持局域网和局域网、局域网和广域网互联,实现不同网络互相通信; 第二,数据处理:提供包括分组过滤、分组转发、优先级、复用、加密、压缩和防火墙等功能; 第三,网络管理:路由器提供包括路由器配置管理、性能管理、容错管理和流量控制等功能。 路由器的工作原理是:当一个网络中的主机要给另一个网络中的主机发送分组时,它首先把分组送给同一网络中用于网间连接的路由器(一般为网关),路由器分析网络层数据包,根据目的地址信息,查找路由表(路由表是由管理员预先设定或路由器动态维护生成的,记录到达目的网络的下一站地址),选择合适的路径,把该分组传递到目的网络用于网间连接的路由器中,然后通过目的网络中内部使用的路由协议,最后递交给目的主机。 路由器与交换机的主要区别体现在以下几个方面: (1)工作层次不同 (2)数据转发所依据的对象不同 (3)传统的交换机只能分割冲突域,不能分割广播域;而路由器可以分割广播域 (4)路由器提供了防火墙的服务 第三层交换技术 第三层交换技术也称多层交换技术或IP交换技术,是相对于传统交换概念而提出的。第三层交换技术就是将交换机制采用硬件进行基于MAC地址转发的思想引入路由器的设计中,大幅度缩短路由器对数据包的处理时间,提高网络数据交换能力。传统路由器通过软件实现路由选择功能,第三层交换的设备通过专用集成电路芯片实现路由选择功能,将数据包处理时间从传统路由器的几千μs减少到几十μs,大大缩短数据包在设备中的传输延迟时间。 其工作过程是: 假设两个站点A、B通过第三层交换机进行通信,发送结点A在开始发送时,把自己的IP地址与B的IP地址比较,来确定B站是否与自己在同一子网内。若B与A在同一子网内,则进行二层转发;若两个机器不在同一子网内,发送站A要向“缺省网关”发出ARP请求,而“缺省网关”其实是三层交换机的第三层交换模块软件中设置的IP地址。 所以当发送站A对“缺省网关”广播出一个ARP请求时,如果第三层交换模块在以往的通信过程中已得到B站的MAC地址,则向发送站A回复B的MAC地址;否则第三层交换模块根据路由信息向B站广播一个ARP请求,B站得到此ARP请示后向第三层交换模块回复其MAC地址,第三层交换模块保存此地址并回复给发送站A,同时将B站的MAC地址发送到二层交换引擎的MAC地址表中。 从这以后,当A向B发送的数据包便全部交给二层交换处理,信息得以高速交换。由于仅仅在路由过程中才需要三层处理,绝大部分数据都通过二层交换转发,这就是所谓的“一次选路,多次交换”。因此三层交换机的速度很快,接近二层交换机的速度,同时比相同路由器的价格低很多。 5、网关 转发器、网桥和路由器主要用于下三层有差异的子网的互连,互连后的网络仍然属于通信子网的范畴。而网关是工作在高层的协议翻译器。不同的通信协议、数据格式或语言,甚至体系结构完全不同的两种系统之间,必须使用网关。网关,同时也可以提供过滤和安全功能。网关根据工作的层不同可分为:传输层网关、应用层网关,大多数工作在应用层。 |